Design, synthesis and characterization of a Pt-Gd metal-organic framework containing potentially catalytically active sites.

نویسندگان

  • Kai C Szeto
  • Kjell Ove Kongshaug
  • Søren Jakobsen
  • Mats Tilset
  • Karl Petter Lillerud
چکیده

The heterobimetallic metal-organic framework {[(BPDC)PtCl(2)](3)(Gd(H(2)O)(3))(2)}.5H(2)O (BPDC = 2,2'-bipyridine-5,5'-dicarboxylate) has been designed and synthesized by hydrothermal methods. The new coordination polymer contains subunits of (BPDC)PtCl(2) (1) where both N atoms of the BPDC ligand are attached to a square-planar Pt(II) center. The two remaining cis coordination sites at Pt(II) are occupied by chloride ions. The final structure (2) of the polymeric network is obtained when Gd(III) ions link together the (BPDC)PtCl(2) units, which are organized in sheets, into larger blocks. These blocks are stacked along the crystallographic [010] direction and are held together by a hydrogen bonding scheme that involves carboxylate oxygen atoms and water molecules in the coordination sphere of Gd. The coordination polymer 2 can be obtained in a single-step reaction or in a two-step synthesis where the corresponding Pt complex (1) was first synthesized followed by reacting 1 with Gd(NO(3))(3).6H(2)O. In situ high temperature powder X-ray diffraction shows that the crystalline coordination polymer transforms into an anhydrous modification at 100 degrees C. This modification is stable to 350 degrees C, at which temperature the structure starts to decompose. The coordination sphere around platinum in the polymer closely resembles organometallic Pt complexes that have been previously found to catalytically or stoichiometrically activate and functionalize hydrocarbon C-H bonds in homogeneous systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active-site-accessible, porphyrinic metal-organic framework materials.

On account of their structural similarity to cofactors found in many metallo-enzymes, metalloporphyrins are obvious potential building blocks for catalytically active, metal-organic framework (MOF) materials. While numerous porphyrin-based MOFs have already been described, versions featuring highly accessible active sites and permanent microporosity are remarkably scarce. Indeed, of the more th...

متن کامل

Synthesis and Characterization of Nano-Structure Copper Oxide From Two Different Copper (II) Metal-Organic Framework Precursors

Nano-structured copper oxides were successfully prepared through direct calcination of 1D ladderlike metal-organic framework [Cu2(btec)(2,2'-bipy)2]∞, (btec = 1,2,4,5-benzenetetracarboxylate and 2,2'-bipy = 2,2'-bipyridine) and porous coordination polymer [Cu(BDC)(bipy)](BDCH2), (BDC = 1,4-benzenedicarboxylate; bipy = 4,4'-bipyridine). The nano-structure of the as-synthesized samples are charac...

متن کامل

Catalytic Aerobic Oxidation of Alkenes by Ag@Metal Organic Framework with High Catalytic Activity and Selectivity

By coupling of Fe2O3@SiO2 particles with metal organic Framework (MOF) the magnetic MOF structure was fabricated. Precipitation and hydrothermal methods were applied for synthesis of core and MOF. Silver nanoparticles were deposited on nickel based metal organic framework surface and magnetic Fe2O3@SiO2@MOF@Ag was obtained. Because of strong coupling between silver nanoparticles and metal organ...

متن کامل

Synthesis, Characterization, and Crystal Structure Determination of Iron(III) Hetero-ligand Complex Containing Chloride, Dimethyl sulfoxide, pyridine-2, 6-dicarboxylate and Water, [Fe(Pydc)(DMSO)(H2O)Cl]

A new metal-organic compound, [Fe(Pydc)(DMSO)(H2O)Cl], (where Pydc is pyridine-2, 6-dicarboxylate and DMSO is dimethyl sulfoxide), has been synthesized and characterized by singlecrystal X-ray diffraction, TGA/DTA, IR and Raman spectroscopy. Green-yellow crystals,crystallized in the monoclinic system, space group P21/n, a = 7.2461(4) Å, b = 10.3018(4) Å, c =17.7667(10) Å, α = 90°, β = 90.014°(5...

متن کامل

Atomically Precise Growth of Catalytically Active Cobalt Sulfide on Flat Surfaces and within a Metal-Organic Framework via Atomic Layer Deposition.

Atomic layer deposition (ALD) has been employed as a new synthetic route to thin films of cobalt sulfide on silicon and fluorine-doped tin oxide platforms. The self-limiting nature of the stepwise synthesis is established through growth rate studies at different pulse times and temperatures. Additionally, characterization of the materials by X-ray diffraction and X-ray photoelectron spectroscop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2008